Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Elife ; 112022 06 06.
Article in English | MEDLINE | ID: covidwho-1934562

ABSTRACT

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Apoptosis , Humans , Macrophages/metabolism , Phagocytosis
2.
J Mol Cell Biol ; 14(4)2022 08 17.
Article in English | MEDLINE | ID: covidwho-1806451

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Subject(s)
COVID-19 , SARS-CoV-2 , Cytokine Release Syndrome , Humans , Leukocytes, Mononuclear , Monocytes
3.
Emerg Infect Dis ; 28(3): 730-733, 2022 03.
Article in English | MEDLINE | ID: covidwho-1674278

ABSTRACT

We conducted a prospective cohort study in a population with diverse ethnic backgrounds from Brazil to assess clinically meaningful symptoms after surviving coronavirus disease. For most of the 175 patients in the study, clinically meaningful symptoms, including fatigue, dyspnea, cough, headache, and muscle weakness, persisted for >120 days after disease onset.


Subject(s)
COVID-19 , Brazil/epidemiology , Humans , Prospective Studies , SARS-CoV-2 , Survivors
4.
RMD Open ; 7(1)2021 02.
Article in English | MEDLINE | ID: covidwho-1066938

ABSTRACT

OBJECTIVE: To evaluate whether the addition of colchicine to standard treatment for COVID-19 results in better outcomes. DESIGN: We present the results of a randomised, double-blinded, placebo-controlled clinical trial of colchicine for the treatment of moderate to severe COVID-19, with 75 patients allocated 1:1 from 11 April to 30 August 2020. Colchicine regimen was 0.5 mg thrice daily for 5 days, then 0.5 mg twice daily for 5 days. The primary endpoints were the need for supplemental oxygen, time of hospitalisation, need for admission and length of stay in intensive care unit and death rate. RESULTS: Seventy-two patients (36 for placebo and 36 for colchicine) completed the study. Median (and IQR) time of need for supplemental oxygen was 4.0 (2.0-6.0) days for the colchicine group and 6.5 (4.0-9.0) days for the placebo group (p<0.001). Median (IQR) time of hospitalisation was 7.0 (5.0-9.0) days for the colchicine group and 9.0 (7.0-12.0) days for the placebo group (p=0.003). At day 2, 67% versus 86% of patients maintained the need for supplemental oxygen, while at day 7, the values were 9% versus 42%, in the colchicine and the placebo groups, respectively (log rank; p=0.001). Two patients died, both in placebo group. Diarrhoea was more frequent in the colchicine group (p=0.26). CONCLUSION: Colchicine reduced the length of both, supplemental oxygen therapy and hospitalisation. The drug was safe and well tolerated. Once death was an uncommon event, it is not possible to ensure that colchicine reduced mortality of COVID-19. TRIAL REGISTRATION NUMBER: RBR-8jyhxh.


Subject(s)
COVID-19 Drug Treatment , Colchicine/administration & dosage , Length of Stay , Oxygen Inhalation Therapy , SARS-CoV-2/genetics , Severity of Illness Index , Adult , Aged , COVID-19/mortality , COVID-19/virology , Colchicine/adverse effects , Diarrhea/chemically induced , Double-Blind Method , Female , Humans , Intensive Care Units , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Treatment Outcome
5.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: covidwho-968998

ABSTRACT

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Subject(s)
COVID-19/pathology , COVID-19/virology , Inflammasomes/metabolism , SARS-CoV-2/physiology , Severity of Illness Index , Apoptosis , Comorbidity , Cytokines/biosynthesis , Humans , Lung/pathology , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Postmortem Changes , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL